The Quantum Decoding Problem : Tight Achievability Bounds and Application to Regev's Reduction

25e Forum des jeunes mathématiciennes et mathématiciens

Agathe Blanvillain, André Chailloux, Jean-Pierre Tillich

27 Novembre 2025

Inria Paris, COSMIQ

Linear codes

Consider \mathcal{C} an [n,k] linear code on a finite field \mathbb{Z}_q i.e \mathbb{Z}_q -linear subspace of \mathbb{Z}_q^n of length n and dimension k. q is prime

A parity check matrix \mathcal{H} of a code \mathcal{C} is such that $\ker(\mathcal{H}) = \mathcal{C}$.

Linear codes

Consider C an [n, k] linear code on a finite field \mathbb{Z}_q i.e \mathbb{Z}_q -linear subspace of \mathbb{Z}_q^n of length n and dimension k. q is prime

A parity check matrix \mathcal{H} of a code \mathcal{C} is such that $\ker(\mathcal{H}) = \mathcal{C}$.

The decoding problem

Input $y=c+e\in\mathbb{Z}_q^n$ with $c\in\mathcal{C}$ and $e\in\mathbb{Z}_q^n$ an error chosen with distribution p. Output c or e

Linear codes

Consider C an [n, k] linear code on a finite field \mathbb{Z}_q i.e \mathbb{Z}_q -linear subspace of \mathbb{Z}_q^n of length n and dimension k. q is prime

A parity check matrix \mathcal{H} of a code \mathcal{C} is such that $\ker(\mathcal{H}) = \mathcal{C}$.

The decoding problem

Input $y=c+e\in\mathbb{Z}_q^n$ with $c\in\mathcal{C}$ and $e\in\mathbb{Z}_q^n$ an error chosen with distribution p. Output c or e

The Short Codeword Problem (SCP)

Input $\mathcal C$ linear code [n,k], a metric $|\cdot|$ on $\mathbb Z_q^n$ and a bound ω Output c a non-zero codeword verifying $|c|\leqslant \omega$

Why are we interested in these problems?

Uses in cryptography:

- Decoding Problem:
 - Encryption : Bike, McEliece, HQC, Kyber
 - Signature : SDitH
- Short Codeword Problem:
 - Signature :Wave , Dillithium

 $\label{ldea:Study} \mbox{Idea}: \mbox{Study the difficulty to solve these problems with the quantum computer}.$

Quantum

Qubit:

Basis states : $|0\rangle$ and $|1\rangle$

Linear quantum superposition of the basis states : $\alpha, \beta \in \mathbb{C}$ with $|\alpha|^2 + |\beta|^2 = 1$

$$|\psi\rangle = \alpha|0\rangle + \beta|1\rangle$$

Quantum register of size n: quantum system with n qubits elements of a Hilbert space of dimension 2^n

 $\mathcal{H}_n = \mathcal{H} \otimes ... \otimes \mathcal{H}$ with $\mathcal{H} = Vect(|0\rangle) \oplus^{\perp} Vect(|1\rangle)$

Evolution of a quantum state :

- Unitary transformation
- measurement

Evolution of the quantum states

Measurement:

Decomposition of the ambiant space into orthogonal subspaces E_i $|\psi\rangle \in \mathcal{H}$ with $\mathcal{H} = \bigoplus^{\perp} E_i$ and Π_i the orthogonal projection on E_i Measurement of the state $|\psi\rangle$:

$$|\psi\rangle \to \frac{\Pi_i |\psi\rangle}{\|\Pi_i |\psi\rangle\|}$$

with probability $\|\Pi_i|\psi\rangle\|^2$

Example : \mathbb{C}^2 : qubit space

 $Vect(\ket{0}) \oplus^{\perp} Vect(\ket{1})$

$$\alpha |0\rangle + \beta |1\rangle \rightarrow \left\{ egin{array}{ll} |0
angle & {
m with probability} |lpha|^2 \ |1
angle & {
m with probability} |eta|^2 \end{array}
ight.$$

General algorithm (Regev)

Quantum algorithm : quantum reduction SCP (multiple solutions) < DP (one solution) Solve SCP using :

- a classical algorithm solving the decoding problem
- the quantum fourier transform

General algorithm (Regev)

Classical Fourier transform : $\widehat{f}(x) = \frac{1}{\sqrt{q^n}} \sum_{y \in \mathbb{Z}_q^n} e^{\frac{2i\pi \langle x, y \rangle}{q}} f(y)$

$$\text{Quantum Fourier transform}: \ \mathsf{QFT}|x\rangle = \frac{1}{\sqrt{q^n}} \sum_{y \in \mathbb{Z}_q^n} e^{\frac{2i\pi\langle x,y\rangle}{q}} |y\rangle$$

We denote the dual code of \mathcal{C} as $:\mathcal{C}^{\perp}=\{x\in\mathbb{Z}_q^n\mid x.c^T=0 \text{ for all }c\in\mathcal{C}\}$

Lemma

$$\mathsf{QFT}(\sum_{c \in \mathcal{C}} \sum_{e} F(e) | c + e \rangle) = \sum_{c^{\perp} \in \mathcal{C}^{\perp}} \hat{F}(c^{\perp}) | c^{\perp} \rangle$$

General algorithm (Regev)

- 1. Construct $\frac{1}{\sqrt{q^k}} \sum_{c \in C} |c\rangle \otimes \sum_e F(e)|e\rangle$
- 2. Intricate $\sum_{c \in C} \sum_{e} F(e) |c\rangle \otimes |c+e\rangle$
- 3. Decode Quantumly solve the decoding problem : from c+e, find c $\frac{1}{Z} \sum_{c \in C} \sum_{e} F(e)|0\rangle|c+e\rangle.$
- 4. Quantum Fourier Transform $\frac{1}{Z}\sum_{c^\perp\in C^\perp}\hat{F}(c^\perp)|0\rangle|c^\perp\rangle$
- 5. Measure

Regev's algorithm modified (Chen, Liu, Zhandry)

- 1. Construct $\frac{1}{\sqrt{g^k}} \sum_{c \in C} |c\rangle \otimes \sum_e F(e)|e\rangle$
- 2. Intricate $\sum_{c \in C} \sum_{e} F(e) |c\rangle \otimes |c+e\rangle = \sum_{c \in C} |c\rangle |\psi_c\rangle$ with $|\psi_c\rangle = \sum_{e \in \mathbb{Z}_0^n} F(e) |c+e\rangle$
- 3. Decode Quantumly solve the decoding problem : from $|\psi_c\rangle$, find c $\frac{1}{Z}\sum_{c\in C}|0\rangle|\psi_c\rangle$.
- 4. Quantum Fourier Transform $\frac{1}{Z}\sum_{c^{\perp}\in C^{\perp}}\hat{F}(c^{\perp})|0\rangle|c^{\perp}\rangle$
- 5. Measure

The quantum decoding problem

The quantum decoding problem (S-LWE)

Input
$$|\psi_c
angle=\sum\limits_{e\in\mathbb{Z}_q^n}F(e)|c+e
angle$$
 with $e\in\mathbb{Z}_q^n$ an error and $F(e)=\sqrt{p(e)}$

Output c

The quantum decoding problem is not harder than the classical decoding problem

When we measure $|\psi_c\rangle$, we get c+e noisy codeword with probability $|F(e)|^2$

State of the art

[Chen, Liu, Zhandry 22]
Introduce S-LWE (quantum decoding problem): Quantum algorithms in polynomial time to solve S-LWE and a specific instance of SIS^{\infty} (SCP with infinite norm)

- particular zone of parameters : no classical algorithm doing this in polynomial time
- reduction from the quantum algorithm solving QDP to the quantum algorithm solving SCP
- not in a constant rate: tends to 0

State of the art

[Chen, Liu, Zhandry 22] Introduce S-LWE (quantum decoding problem): Quantum algorithms in polynomial time to solve S-LWE and a specific instance of SIS^{\infty} (SCP with infinite norm)

- particular zone of parameters : no classical algorithm doing this in polynomial time
- reduction from the quantum algorithm solving QDP to the quantum algorithm solving SCP
- not in a constant rate : tends to 0

The quantum decoding problem [Chailloux, Tillich 23]

- natural zone of parameters: constant rate
- Bernoulli distribution
- solve the quantum decoding problem in polynomial time
- quantum algorithm in polynomial time to solve SCP equivalent to classical Prange algorithm
- go beyond with a non polynomial time algorithm to find minimal weight codeword in the dual code (PGM)

Latest results

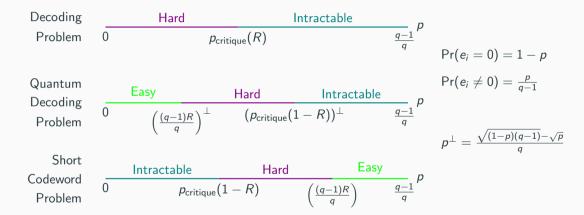
[Chen, Liu, Zhandry 22]
Introduce S-LWE (quantum decoding problem): Quantum algorithms in polynomial time to solve S-LWE and a specific instance of SIS^{\infty} (SCP with infinite norm)

- particular zone of parameters : no classical algorithm doing this in polynomial time
- reduction from the quantum algorithm solving QDP to the quantum algorithm solving SCP
- not in a constant rate : tends to 0

No exponential quantum speedup for SIS[∞] anymore [Kothary, O'Donnell, Wu 25]

- \bullet Classical algorithm that solves SIS^∞ in polynomial time
- No exponential quantum speedup anymore

Why is it interesting?



The Pretty Good Measurement

Problem : From an ensemble $\{|\psi_i\rangle\}_{i\in[n]}$ of quantum states , we want to recover i from $|\psi_i\rangle$ when i is chosen at random.

Definition

The PGM associated to the ensemble $\{|\psi_i\rangle\}_{i\in[n]}$ of quantum states is the POVM $\{M_i\}_{i\in[n]}$ with

$$M_i =
ho^{-\frac{1}{2}} |\psi_i\rangle\langle\psi_i|
ho^{-\frac{1}{2}}$$
 given $ho = \sum_{i\in[n]} |\psi_i\rangle\langle\psi_i|$

Proposition

The PGM is optimal

Achievability result for random linear codes

We analyse the PGM in a general case of noise distribution $f=g^{\otimes n}$

Let
$$R = \frac{k}{n}$$
 be the rate of the code \mathcal{C} and $H_q(|\hat{g}|^2) = -\sum_{e \in \mathbb{Z}_q} |\hat{g}(e)|^2 \log(|\hat{g}(e)|^2)$ be the entropy.

Theorem: Achievability result for random linear codes [Blanvillain, Chailloux, Tillich]

If there exists $\delta > 0$ such that $R < H_q(|\hat{g}|^2) + \delta$, then

$$\mathrm{P}_{\mathrm{PGM}} = 1 - o(1)$$

Achievability result for random linear codes

We analyse the PGM in a general case of noise distribution $f = g^{\otimes n}$

Let $R = \frac{k}{2}$ be the rate of the code \mathcal{C} and $H_q(|\hat{g}|^2) = -\sum_{e \in \mathbb{Z}} |\hat{g}(e)|^2 \log(|\hat{g}(e)|^2)$ be the entropy.

Theorem: Achievability result for random linear codes | Blanvillain, Chailloux, Tillich |

If there exists $\delta > 0$ such that $R < H_q(|\hat{g}|^2) + \delta$, then

$$P_{\rm PGM} = 1 - o(1)$$

Theorem: Tractability for Hamming distribution [Chailloux Tillich]

Let g(e) the error function for the Bernoulli distribution such that

$$g(0)=\sqrt{1-p}$$
 and for $e\in\mathbb{Z}_qackslash\{0\}$, $g(e)=\sqrt{rac{p}{p-1}}$. If $p<(\delta_{\min}(1-R))^{\perp}$, then $\mathrm{P}_{\mathrm{PGM}}=1-o(1)$

If
$$p < (\delta_{\min}(1-R))^{\perp}$$
, then $\mathrm{P}_{\mathrm{PGM}} = 1 - o(1)^{\perp}$

Non-achievability result in the general case

Theorem: Achievability result for random linear codes [Blanvillain, Chailloux, Tillich]

If there exists $\delta > 0$ such that $R < H_q(|\hat{g}|^2) - \delta$, then

$$P_{\rm PGM}=1-o(1)$$

Theorem: Non-achievability result in the general case [Blanvillain, Chailloux, Tillich]

If there exists $\delta > 0$ such that $R \geqslant H_q(|\hat{g}|^2) + \delta$, then for any quantum algorithm and any code with q^{Rn} codewords,

$$P_{PGM} = o(1)$$

The rank metric case

Rank metric

When $n = a \cdot b$, $a \ge b$

Arrange the entries of a vector $\pmb{x} \in \mathbb{Z}_q^n$ in a matrix $\pmb{\mathsf{X}} = \mathsf{Mat}(\pmb{x}) \in \mathbb{Z}_q^{a \times b}$

$$|x|_{\mathsf{rk}} \stackrel{\triangle}{=} \mathsf{rank}(\mathbf{X})$$

$$f_t^{a,b}(\mathbf{e}) = \begin{cases} \begin{bmatrix} b - |\mathbf{e}|_{\mathsf{rk}} \\ t - |\mathbf{e}|_{\mathsf{rk}} \end{bmatrix}_q & \text{if } |\mathbf{e}|_{\mathsf{rk}} \leqslant t & \text{with } \begin{bmatrix} b \\ t \end{bmatrix}_q = \begin{cases} \prod_{i=0}^{t-1} \frac{q^b - q^i}{q^t - q^i} & \text{if } t \leqslant b \\ 0 & \text{else} \end{cases}$$

$$\widehat{f_t} = f_{b-t}. (1)$$

The rank metric case

Application in rank metric : case of interest in code-based cryptography : alternative to the usual Hamming metric

The distribution does not correspond to a product distribution

The probability distribution is a decreasing function of the rank weight. We get at the limit where the PGM works elements in the dual code of minimum rank weight.

Tight achievability results: it is possible from an information theoretic perspective to solve the Quantum Decoding Problem for random linear codes when $R < H_q(|\hat{g}|^2) - \delta$ for $\delta > 0$

Tight achievability results: it is possible from an information theoretic perspective to solve the Quantum Decoding Problem for random linear codes when $R < H_q(|\hat{g}|^2) - \delta$ for $\delta > 0$. The algorithm can be used in Regev's reduction to solve the Short Codeword Problem to find low weight dual codewords. In a general distribution $|f|^2$, the algorithm permits to find the most probable codeword according to the probability distribution $|\hat{f}|^2$.

codewords

Tight achievability results: it is possible from an information theoretic perspective to solve the Quantum Decoding Problem for random linear codes when $R < H_q(|\hat{g}|^2) - \delta$ for $\delta > 0$. The algorithm can be used in Regev's reduction to solve the Short Codeword Problem to find low weight dual codewords. In a general distribution $|f|^2$, the algorithm permits to find the most probable codeword according to the probability distribution $|\hat{f}|^2$.

When the distribution is a decreasing function of the norm or the weight, we find minimal

codewords

Tight achievability results: it is possible from an information theoretic perspective to solve the Quantum Decoding Problem for random linear codes when $R < H_q(|\hat{g}|^2) - \delta$ for $\delta > 0$. The algorithm can be used in Regev's reduction to solve the Short Codeword Problem to find low weight dual codewords. In a general distribution $|f|^2$, the algorithm permits to find the most probable codeword according to the probability distribution $|\hat{f}|^2$.

When the distribution is a decreasing function of the norm or the weight, we find minimal

Thank you for your attention!