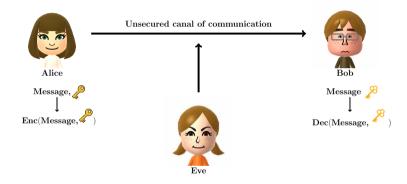
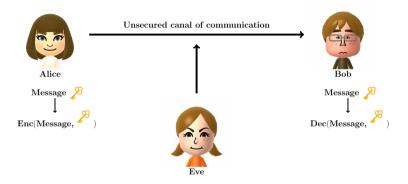
Differential cryptanalysis

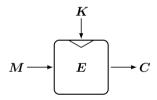

Dounia M'foukh¹

¹Inria Paris

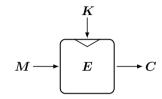


- Symmetric cryptography
- ② Differential Cryptanalysi
- Key recovery attack

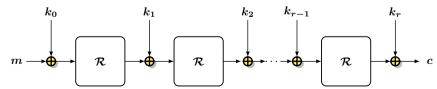
Symmetric encryption



- Goal: Ensure that only the authorized entities has access to the message.
- Secret key shared beforehand.


- Goal: Ensure that only the authorized entities has access to the message.
- Secret key shared beforehand.

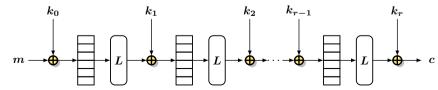
Block ciphers


- E is a function $\mathbb{F}_2^n \times \mathbb{F}_2^k \to \mathbb{F}_2^n$.
- Block of size *n* of 64 or 128 bits in general.
- Key of size *k* of 128 or 256 bits in general.

Block ciphers

- E is a function $\mathbb{F}_2^n \times \mathbb{F}_2^k \to \mathbb{F}_2^n$.
- Block of size n of 64 or 128 bits in general.
- Key of size *k* of 128 or 256 bits in general.

Usual structure of a block cipher:



Block ciphers

- E is a function $\mathbb{F}_2^n \times \mathbb{F}_2^k \to \mathbb{F}_2^n$.
- Block of size *n* of 64 or 128 bits in general.
- Key of size *k* of 128 or 256 bits in general.

Usual structure of a block cipher:

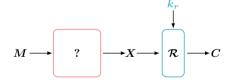
Security of a Block cipher

The security is defined by the best generic attack.

→ Exhaustive search of the secret key.

- Best attack against an ideal cipher.
- Test all the possible key with a known pair (M, C).
- Cost 2^k encryption.
- The size *k* of the key need to be big enough.

Security of a Block cipher


The security is defined by the best generic attack.

- → Exhaustive search of the secret key.
- Best attack against an ideal cipher.
- Test all the possible key with a known pair (M, C).
- Cost 2^k encryption.
- The size *k* of the key need to be big enough.
- Cryptanalysis is needed to trust the security of the ciphers.

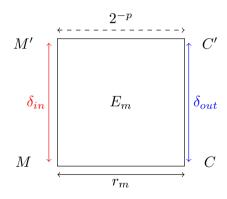
Distinguisher

- Find property to distinguish a block cipher from a random permutation with a high probability.
- Number of queries --- complexity of the distinguisher.
- 2 Last round attack

- Transform the distinguisher into key-recovery attack.
- For each guess of $k_r \to \text{check}$ if (M, X) verify the distinguisher properly.
- Can add more than one round.

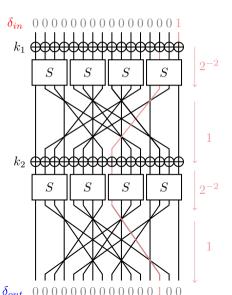
How to measure the efficiency of an attack?

Three complexities to measure an attack:


- Time complexity: number of computations to succeed \rightsquigarrow < 2^k encryptions.
- Data complexity: number of queries used \rightsquigarrow < 2^n .
- Memory complexity: size of memory used.

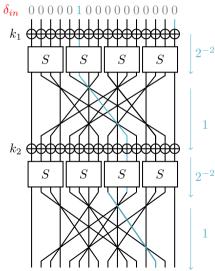
→ Many possible Trade-offs.

- Symmetric cryptography
- Oifferential Cryptanalysis
- 8 Key recovery attac

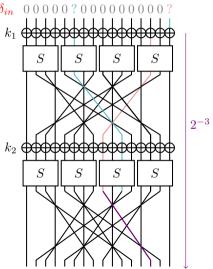

Differential Cryptanalysis

Introduced to the public by Biham and Shamir in 1990 in [BS90].

- Distinguishes if $2^{-p} >> 2^{-n}$.
- $(\delta_{in}, \delta_{in})$ is called a differential.


An example

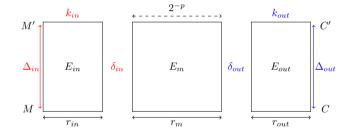
- Probability of the path $2^{-4} >> 2^{16}$.
- Difference distribution table:


		_	_													
	0	1	2	3	4	5	6	7	8	9	а	b	С	d	e	f
0	16	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	4	4	4	4	0	0	0	0	0	0	0	0
2	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
3	0	0	0	0	0	0	0	0	4	0	0	4	2	2	2	2
4	0	4	0	0	0	0	4	0	0	2	2	0	2	0	0	2
5	0	4	0	0	0	4	0	0	0	2	2	0	2	0	0	2
6	0	4	0	0	4	0	0	0	0	2	2	0	0	2	2	0
7	0	4	0	0	0	0	0	4	0	2	2	0	0	2	2	0
8	0	0	4	4	0	0	0	0	4	0	4	0	0	0	0	0
9	0	0	0	0	2	2	2	2	0	0	0	0	2	2	2	2
a	0	0	0	0	2	2	2	2	4	0	4	0	0	0	0	0
b	0	0	4	4	0	0	0	0	0	0	0	0	2	2	2	2
С	0	0	2	2	2	2	0	0	0	2	0	2	2	0	2	0
d	0	0	2	2	0	0	2	2	0	2	0	2	0	2	0	2
e	0	0	2	2	0	0	2	2	0	2	0	2	2	0	2	0
f	0	0	2	2	2	2	0	0	0	2	0	2	0	2	0	2

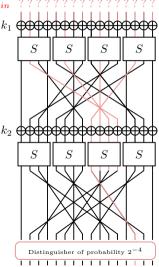
An example

- Probability of the path $2^{-4} >> 2^{16}$.
- Same output as other path.

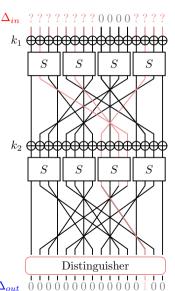
An example



- Probability of the path $2^{-4} >> 2^{16}$.
- Same output as other path.
- Combine both differential characteristic
 probability increases.
- This probability might be wrong (quasi-differential...).


- Symmetric cryptography
- ② Differential Cryptanalysis
- 8 Key recovery attack

Key-recovery attack


Let $E = E_{out} \circ E_m \circ E_{in}$ be a block cipher.

- Δ_{in} and Δ_{out} are the sets of differences that can lead to δ_{in} and δ_{out} .
- Find candidate triplets $(P, P', k_{in} \cup k_{out})$ that imply δ_{in} and δ_{out} .
- The time complexity depends in part on the size of k_{in} and k_{out} .

- Propagate the differences δ_{in} and δ_{out} .
- Build "structure" of plaintexts, the space of pairs of plaintext taking all the possible values for the? bits.
- Filter when their corresponding ciphertexts using Δ_{out} .
- Guess the all the bits of k_1 and 4 bits of k_2 .

- Study the possible weaknesses of the Shox.
- Other existing techniques to improve key-recovery attacks ↔ State-test technique: guess the bit of the state instead of the key.
- Recover information on the key through non-linear equations.

Conclusion

- → Still need to study known attacks.

Conclusion

- → Still need to study known attacks.
- Cryptanalysis is essential to trust the ciphers used.

Thank you for your attention!