HARDNESS OF LEARNING WITH PHYSICAL ROUNDING AND NOISE FROM LEARNING WITH ERRORS

Emeline Repel¹ joint work with C. Hoffman², A. Roux-Langlois¹ ad F.X. Standaert²

¹Université Caen Normandie, ENSICAEN, CNRS, France - ²Université Catholique de Louvain, Belgique

Table of contents

- 1. Introduction
- 2. Lattice-based cryptography
- 3. Side-channel resilience
- 4. Hardness of new assumption
- 5. Conclusion and Open Problems

Outline

- 1. Introduction
- 2. Lattice-based cryptography
- 3. Side-channel resilience
- 4. Hardness of new assumption
- Conclusion and Open Problems

Cryptography = enable listening or modifying messages

Public key - P: Private key

Cryptography = enable listening or modifying messages

► Asymmetric Cryptography: occasional exchanges (Private key exchange)

P: Public key - P: Private key

Emeline Repel

Cryptography = enable listening or modifying messages

► Asymmetric Cryptography: occasional exchanges (Private key exchange)

P: Public key - P: Private key

Cryptography = enable listening or modifying messages

► Asymmetric Cryptography: occasional exchanges (Private key exchange)

Symmetric Cryptography: frequent interactions (daily communication)

- P: Public key P: Private key
- P: Shared but Private key

Cryptography = enable listening or modifying messages

► Asymmetric Cryptography: occasional exchanges (Private key exchange)

Symmetric Cryptography: frequent interactions (daily communication)

- P: Public key P: Private key
- Shared but Private key

Cryptography = enable listening or modifying messages

► Asymmetric Cryptography: occasional exchanges (Private key exchange)

► Symmetric Cryptography: frequent interactions (daily communication)

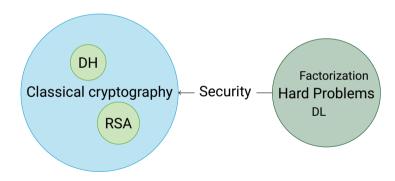
- P: Public key P: Private key
- P: Shared but Private key

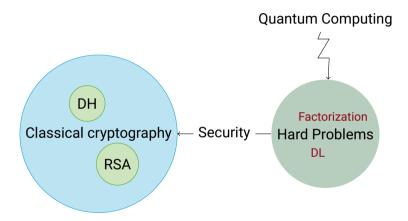
Cryptography = enable listening or modifying messages

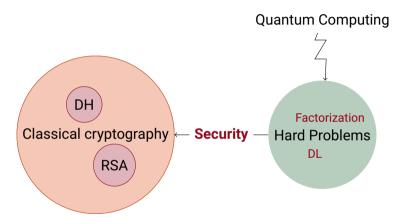
► Asymmetric Cryptography: occasional exchanges (Private key exchange)

► Symmetric Cryptography: frequent interactions (daily communication)

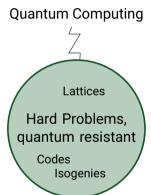
- P: Public key P: Private key
- P: Shared but Private key

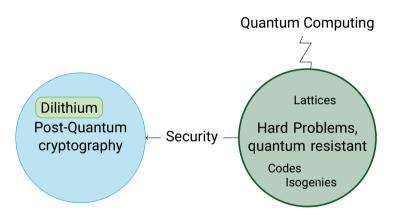


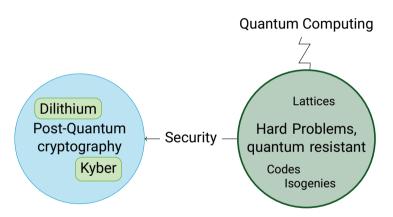












Outline

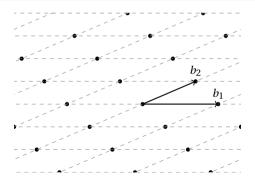
- Introduction
- 2. Lattice-based cryptography
- 3. Side-channel resilience
- 4. Hardness of new assumption
- Conclusion and Open Problems

About Lattices

Lattice

Let $n \in \mathbb{Z}$ and $\mathbf{b_1},...,\mathbf{b_n} \in \mathbb{R}^n$, a lattice Λ is a discrete subgroup of \mathbb{R}^n given by the set of all integer combinations of linearly independent basis vectors $\mathbf{B} = \mathbf{b_1},...,\mathbf{b_n}$:

$$\Lambda(\mathbf{B}) = \left\{ \sum_{i=1}^{n} x_i \mathbf{b}_i : x_i \in \mathbb{Z} \right\}$$



▶ Among 4 finalists of the NIST competition, 3 are based on LWE

$$b = A \cdot s + e \pmod{q}$$

•: public uniform - •: short secret - •: short gaussian error

▶ Among 4 finalists of the NIST competition, 3 are based on LWE

$$b = A \cdot s + e \pmod{q}$$
 Given (A, b) , find s

•: public uniform - •: short secret - •: short gaussian error

Among 4 finalists of the NIST competition, 3 are based on LWE

$$b = A \cdot s + e \pmod{q}$$

$$\xrightarrow{Search} \text{ Given } (\mathbf{A}, \mathbf{b}), \text{ find } \mathbf{s}$$

$$\xrightarrow{Decisional} \text{ Distinguish } (\mathbf{A}, \mathbf{b}) \text{ from the uniform}$$

•: public uniform - •: short secret - •: short gaussian error

Among 4 finalists of the NIST competition, 3 are based on LWE

$$b = A \cdot s + e \pmod{q}$$

$$\xrightarrow{Search} \text{ Given } (\mathbf{A}, \mathbf{b}), \text{ find } \mathbf{s}$$

$$\xrightarrow{Decisional} \text{ Distinguish } (\mathbf{A}, \mathbf{b}) \text{ from the uniform}$$

- •: public uniform •: short secret •: short gaussian error
 - Security based on worst-case lattices assumption for Gaussian error e

Among 4 finalists of the NIST competition, 3 are based on LWE

$$b = A \cdot s + e \pmod{q}$$

$$\xrightarrow{Search} \text{ Given } (\mathbf{A}, \mathbf{b}), \text{ find } \mathbf{s}$$

$$\xrightarrow{Decisional} \text{ Distinguish } (\mathbf{A}, \mathbf{b}) \text{ from the uniform}$$

- •: public uniform •: short secret •: short gaussian error
 - Security based on worst-case lattices assumption for Gaussian error e
 - ▶ Among 5 finalists of the NIST competition, 3 are based on structured LWE

Among 4 finalists of the NIST competition, 3 are based on LWE

$$b = A \cdot s + e \pmod{q}$$

$$\xrightarrow{Search} \text{ Given } (\mathbf{A}, \mathbf{b}), \text{ find } \mathbf{s}$$

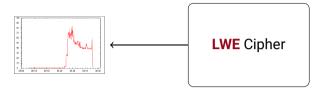
$$\xrightarrow{Decisional} \text{ Distinguish } (\mathbf{A}, \mathbf{b}) \text{ from the uniform}$$

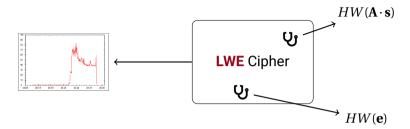
- •: public uniform •: short secret •: short gaussian error
 - Security based on worst-case lattices assumption for Gaussian error e
 - ▶ Among 5 finalists of the NIST competition, 3 are based on structured LWE

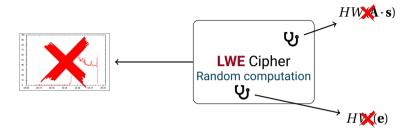
What about physical attacks?

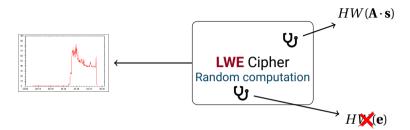
Outline

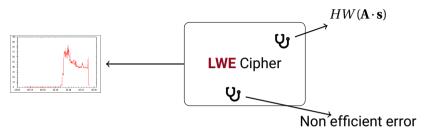
- Introduction
- 2. Lattice-based cryptography
- 3. Side-channel resilience
- 4. Hardness of new assumption
- Conclusion and Open Problems











Probabilistic error \longrightarrow Deterministic error LWE \longrightarrow LWR

$$(\mathbf{A}, \mathbf{As} + \mathbf{e} \pmod{q}) \longrightarrow (\mathbf{A}, \lceil \mathbf{As} \pmod{q}) \rfloor_p)$$

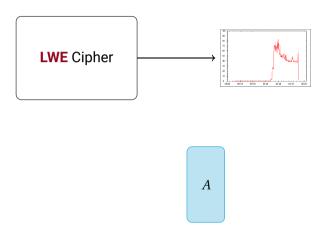
Probabilistic error
$$\longrightarrow$$
 Deterministic error LWE \longrightarrow LWR

$$(\mathbf{A}, \mathbf{As} + \mathbf{e} \pmod{q}) \longrightarrow (\mathbf{A}, \lceil \mathbf{As} \pmod{q}) \rfloor_p)$$

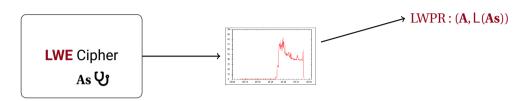
Outline

- Introduction
- 2. Lattice-based cryptography
- 3. Side-channel resilience
- 4. Hardness of new assumption
- 5. Conclusion and Open Problems

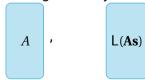
Hard Learning Problem from Side channel analysis



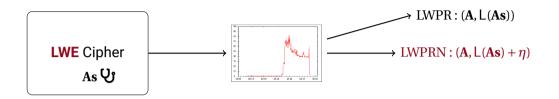
Hard Learning Problem from Side channel analysis



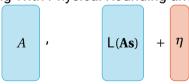
Learning With Physical Rounding



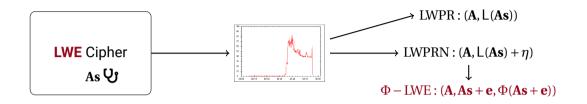
Hard Learning Problem from Side channel analysis

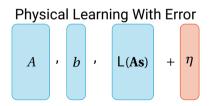


Learning With Physical Rounding and Noise

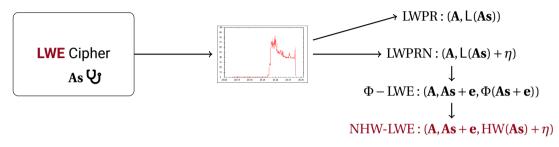


Hard Learning Problem from Side channel analysis

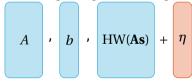




Hard Learning Problem from Side channel analysis



Noisy Hamming Weight Learning With Error



Hamming Weight = Number of 1 in the binary decomposition

Hint-LWE gives additional hints:

$$(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}, (\gamma_i, \gamma_i \mathbf{s} + y_i)_{i \leq k})$$

Hint-LWE gives additional hints: $(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}, (\gamma_i, \gamma_i \mathbf{s} + y_i)_{i \leq k})$

Entropic-LWE considers the entropy of the secret instead of its distribution

Hint-LWE gives additional hints: $(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}, (\gamma_i, \gamma_i \mathbf{s} + y_i)_{i \le k})$

Entropic-LWE considers the entropy of the secret instead of its distribution

▶ Both security relying on LWE (impact on the dimension of the LWE problem).

Hint-LWE gives additional hints: $(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}, (\gamma_i, \gamma_i \mathbf{s} + y_i)_{i \le k})$

Entropic-LWE considers the entropy of the secret instead of its distribution

- ▶ Both security relying on LWE (impact on the dimension of the LWE problem).
- NIST standards are based on short secret distribution

Hint-LWE gives additional hints:

$$(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}, (\gamma_i, \gamma_i \mathbf{s} + y_i)_{i \leq k})$$

Entropic-LWE considers the entropy of the secret instead of its distribution

- ▶ Both security relying on LWE (impact on the dimension of the LWE problem).
- NIST standards are based on short secret distribution

$$H_{\infty}(\mathbf{s} \mid \mathbf{A}, \mathrm{HW}(\mathbf{A}\mathbf{s})) \geq \underbrace{n \log(q)}_{\mathrm{bitLenght}(\mathbf{s})} - \underbrace{m}_{\mathrm{bitLenght}(\mathrm{HW}(\mathbf{a_i}\mathbf{s}))} \cdot \underbrace{\log(\log(q))}_{\mathrm{bitLenght}(\mathrm{HW}(\mathbf{a_i}\mathbf{s}))} \tag{1}$$

Hint-LWE gives additional hints:

Entropic-LWE considers the entropy of the secret instead of its distribution

 $(\mathbf{A}, \mathbf{A}\mathbf{s} + \mathbf{e}, (\gamma_i, \gamma_i \mathbf{s} + y_i)_{i \leq k})$

- ▶ Both security relying on LWE (impact on the dimension of the LWE problem).
- NIST standards are based on short secret distribution

$$H_{\infty}(\mathbf{s} \mid \mathbf{A}, \mathrm{HW}(\mathbf{A}\mathbf{s})) \geqslant \underbrace{n\log(q)}_{\mathrm{bitLenght}(\mathbf{s})} - \underbrace{n\log(\log(q))}_{\mathrm{bitLenght}(\mathrm{HW}(\mathbf{a_i}\mathbf{s}))} \tag{1}$$

► Entropic-LWE is not conclusive with such a drop of entropy on the secret

Result on Noisy Hamming Weight Learning With Error

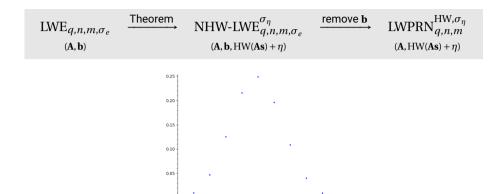


Figure: Distribution of HW(As) for q = 1117 and n = 20 for a fixed vector **a**

Intuition of reduction

Showing that sNHW-LWE is hard under sLWE = construct an adversary against sLWE using an adversary against sNHW-LWE.

$$\mathcal{C} \qquad \text{LWE} \qquad \mathcal{B} \qquad \Phi\text{-LWE} \qquad \mathcal{A}$$

$$\mathbf{A} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^{m \times n}$$

$$\mathbf{s} \stackrel{\$}{\leftarrow} \mathbb{Z}_q^n, \mathbf{e} \leftarrow \chi^m$$

$$\mathbf{h} := \text{HW}(\mathbf{b})$$

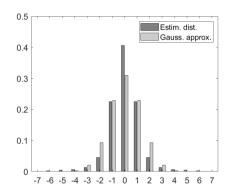
$$\approx \text{HW}(\mathbf{A}\mathbf{s}) + \mathbf{d}$$

$$\eta \leftarrow \sigma_{\eta}$$

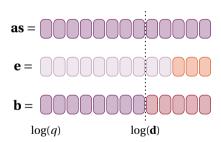
$$(\mathbf{A}, \mathbf{b}, \mathbf{h} + \eta)$$

$$(\mathbf{A}, \mathbf{b}, \mathrm{HW}(\mathbf{b}) + \eta) \xrightarrow{\mathsf{Lemma}} (\mathbf{A}, \mathbf{As} + \mathbf{e}, \mathrm{HW}(\mathbf{As}) + \mathbf{d} + \eta) \xrightarrow{\mathsf{SD/RD}} (\mathbf{A}, \mathbf{As} + \mathbf{e}, \mathrm{HW}(\mathbf{As}) + \eta')$$

From LWE sample to NHW-LWE sample



Difference HW(**b**) – HW(**As**) and its distance to a Gaussian distribution.



Outline

- Introduction
- 2. Lattice-based cryptography
- 3. Side-channel resilience
- 4. Hardness of new assumption
- 5. Conclusion and Open Problems

Conclusion

- ► Known hardness of LWE under physical leakage in a more realistic model (noisy Hamming Weight)
- Possibility of relaxation in masking LWE-based cryptosystems

Conclusion

- Known hardness of LWE under physical leakage in a more realistic model (noisy Hamming Weight)
- Possibility of relaxation in masking LWE-based cryptosystems
- Is the decisionnal variant as hard as the search one?
- Is there exist a better bound on d knowing A?
- Can it be possible to lead to a known hint variant with special case modulus such as Mersenne prime or power of two?

Conclusion

- Known hardness of LWE under physical leakage in a more realistic model (noisy Hamming Weight)
- Possibility of relaxation in masking LWE-based cryptosystems
- Is the decisionnal variant as hard as the search one?
- Is there exist a better bound on d knowing A?
- ► Can it be possible to lead to a known hint variant with special case modulus such as Mersenne prime or power of two?

Thank you for your attention