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Toward long-range aperiodic order

What is meant by quasiperiodicity?



The objects under consideration

Infinite words (sequences with values in a finite alphabet)

abaababaabaababaababaabaababaabaababaababaa · · ·

Tilings

A tiling of the plane is a collection of tiles that covers the
plane with no overlaps



Tilings and

quasicrystals



Crystals and periodicity



Crystals and diffraction

Periodicity ⇒ discrete diffractogram



Crystals and diffraction

Periodicity 6⇐ discrete diffractogram



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang’61, Berger’66, Robinson’71,...])



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang’61, Berger’66, Robinson’71,...])

Quasicrystals produce a discrete diffraction diagram (=order)

Diffraction comes from regular spacing and local interactions
of the point set Λ (consider the relative positions Λ− Λ)



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang’61, Berger’66, Robinson’71,...])

“His discovery was extremely controversial. In the course of
defending his findings, he was asked to leave his research group.
However, his battle eventually forced scientists to reconsider their
conception of the very nature of matter.”

c© Communiqué de presse de l’Académie royale suédoise des
sciences 2011, Prix Nobel de D. Schechtman.



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order
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Which mathematical models for quasicrystals?



Quasiperiodicity and quasicrystals
Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang’61, Berger’66, Robinson’71,...])

Which mathematical models for quasicrystals?

There are mainly two methods for producing quasicrystals

Substitutions

Cut and project schemes

[WHAT IS.. a Quasicrystal? M. Senechal]



Which models for quasicrystals?

Aperiodic mosaics, such as those found in the medieval Islamic
mosaics of the Alhambra Palace in Spain and the Darb-i Imam
Shrine in Iran, have helped scientists understand what
quasicrystals look like at the atomic level. In those mosaics, as in
quasicrystals, the patterns are regular - they follow mathematical
rules - but they never repeat themselves.

When scientists describe Shechtman’s quasicrystals, they use a
concept that comes from mathematics and art: the golden ratio.

c© Communiqué de presse de l’Académie royale suédoise des
sciences 2011



Tilings and art



Tilings and art



Tilings and design



Floors

c© Thomas Fernique – Image des mathématiques



A periodic tiling



A quasiperidoic tiling

Every finite patch can be found
in any sufficiently large patch



Cut and project schemes

Projection of a “plane” slicing through a higher dimensional lattice

The order comes from the lattice structure
The nonperiodicity comes from the irrationality of the normal
vector of the “plane”



Substitutions



Substitutions

Substitutions on words and symbolic dynamical systems

Substitutions on tiles : inflation/subdivision rules, tilings and
point sets

Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/

[E. Harriss, D. Frettlöh]





Substitutions and tilings

Principle One takes

a finite number of prototiles {T1,T2, . . . ,Tm}
an expansive transformation Q

a rule that allows one to divide each QTi into copies of the
T1,T2, . . . ,Tm

A substitution is a simple production method that allows one to
construct infinite tilings using a finite number of tiles

Example

A PRIMER ON SUBSTITUTION TILINGS OF THE EUCLIDEAN PLANE 5

1.6. Outline of the paper. Substitutions of constant length have a natural generalization to
tilings in higher dimensions, which we introduce in Section 2. These generalizations, which include
the well-studied self-similar tilings, rely upon the use of linear expansion maps and are therefore
rigidly geometric. We present examples in varying degrees of generality and include a selection of
the major results in the field.

Extending substitutions of non-constant length to higher dimensions seems to be more difficult,
and is the topic of Section 3. To even define what this class contains has been problematic and
there is not yet a consensus on the subject. For lack of existing terminology we have decided to call
this type of substitution combinatorial as tiles are combined to create the substitutions without
any geometric restriction save that they can be iterated without gaps or overlaps, and because in
certain cases it is possible to define them in terms of their graph-theoretic structure.

In many cases one can transform combinatorial tiling substitutions into geometric ones through
a limit process. In Section 4, we will discuss how to do this and what the effects are to the extent
that they are known. We conclude the paper by discussing several of the different ways substitution
tilings can be studied, and what sorts of questions are of interest.

2. Geometric tiling substitutions

Although the idea had been around for several years, self-similar tilings of the plane were given a
formal definition and introduced to the wider public by Thurston in a series of four AMS Colloquium
lectures, with lecture notes appearing thereafter [59]. Throughout the literature one finds varying
degrees of generality and some commonly used restrictions. We make an effort to give precise
definitions here, adding remarks which point out some of the differences in usage and in terminology.

2.1. Self-similar tilings: proper inflate-and-subdivide rules. For the moment we assume
that the only rigid motions allowed for equivalence of tiles are translations; this follows [59] and
[57]. We give the definitions as they appear in [57], which includes that of [59] as a special case.

Let φ : Rd → Rd be a linear transformation, diagonalizable over C, that is expanding in the sense
that all of its eigenvalues are greater than one in modulus. A tiling T is called φ-subdividing if

(1) for each tile T ∈ T , φ(T ) is a union of T -tiles, and
(2) T and T ′ are equivalent tiles if and only if φ(T ) and φ(T ′) form equivalent patches of tiles

in T .

A tiling T will be called self-affine with expansion map φ if it is φ-subdividing, repetitive, and
has finite local complexity. If φ is a similarity the tiling will be called self-similar. For self-similar
tilings of R or R2 ∼= C there is an expansion constant λ for which φ(z) = λz.

The rule taking T ∈ T to the union of tiles in φ(T ) is called an inflate-and-subdivide rule because
it inflates using the expanding map φ and then decomposes the image into the union of tiles on the
original scale. If T is φ-subdividing, then it will be invariant under this rule, therefore we show the
inflate-and-subdivide rule rather than the tiling itself. The rule given in Figure 1 is an inflate-and-
subdivide rule with φ(z) = 3z. However, the rule given in Figure 3 is not an inflate-and-subdivide
rule.

Example 5. The “L-triomino” or “chair” substitution uses four prototiles, each being an L formed
by three unit squares. We have chosen to color the prototiles since they are inequivalent up to
translation. The expansion map is φ(z) = 2z and in Figure 5 we show the substitution of the four
prototiles.

Figure 5. The “chair” or “L-triomino” substitution.



The chair tiling
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This geometric substitution can be iterated simply by repeated application of φ followed by the
appropriate subdivision. Parallel to the symbolic case, we call a tile that has been inflated and
subdivided n times a level-n tile. In Figure 6 we show level-n tiles for n = 2, 3, and 4.

Figure 6. Level-2, level-3, and level-4 tiles.

2.2. A few important results. One of the earliest results was a characterization of the expansion
constant λ ∈ C of a self-similar tiling of C.

Theorem 2.1. (Thurston [59], Kenyon [27]) A complex number λ is the expansion constant for
some self-similar tiling if and only if λ is an algebraic integer which is strictly larger than all its
Galois conjugates other than its complex conjugate.

The forward direction was proved by Thurston and the reverse direction by Kenyon. In [28],

Kenyon extends the result to self-affine tilings of Rd in terms of eigenvalues of the expansion map.
In the study of substitutions, from one-dimensional symbolic substitutions to very general tiling

substitutions, the substitution matrix is an indispensable tool. (This matrix has also been called
the “transition”, “composition”, “subdivision”, or even “abelianization” matrix). Suppose that the
prototile set (or alphabet) has m elements labeled by {1, 2, ...,m} . The substitution matrix M is
the m×m matrix with entries given by

(1) Mij = the number of tiles of type i in the substitution of the tile of type j.

For example, the substitution in Example 3 has substitution matrix M =

(
9 1
0 8

)
when we

label a = 1 and b = 2. If an initial configuration of tiles has n white tiles and m blue tiles, then
M [n m]T is the number of white and blue tiles after one application of the substitution.

Since the substitution matrix is always an integer matrix with nonnegative entries, Perron-
Frobenius theory is relevant (see for example [29, 57]). The results we need require M to be
irreducible: for every i, j ∈ {1, 2, ...,m} there exists an n such that (Mn)ij > 0. Among other
things, the Perron-Frobenius theorem states that if M is irreducible, then the largest eigenvalue
will be a positive real number that is larger in modulus than any of the other eigenvalues of the
matrix. This eigenvalue is unique, has multiplicity one, and is called the Perron eigenvalue of the
matrix.

Primitivity, a special case of irreducibility, is particularly important. A matrix M is primitive
if there is an n > 0 such that Mn has strictly positive entries. Primitivity of M means if one
substitutes any tile (or letter) a fixed number of times, one will see all of the other tiles (or letters).



Substitutions allow the construction of aperiodic tilings

c© E. Harriss



Substitutions allow the construction of aperiodic tilings

c© E. Harriss



A substitution on words : the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1

1
12
121
12112
12112121

σ∞(1) = 121121211211212 · · ·



A substitution on words : the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1 σ∞(1) = 121121211211212 · · ·

The Fibonacci word yields a quasicrystal



A substitution on words : the Fibonacci substitution

Definition A substitution σ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

σ : 1 7→ 12, 2 7→ 1 σ∞(1) = 121121211211212 · · ·
Why the terminology Fibonacci word?

σn+1(1) = σn(12) = σn(1)σn(2)

σn(2) = σn−1(1)

σn+1(1) = σn(1)σn−1(1)

The length of the word σn(1) satisfies the Fibonacci recurrence



Which substitutions do generate quasicrystals?



How to define a notion of order for an infinite word?

Consider the Fibonacci word

ω = abaababaabaababaababaabaababaabaababaababaa · · ·

There is a simple algorithmic way to construct it

(cf. Kolmogorov complexity)

But not all substitutions do produce quasicrystals



How to define a notion of order for an infinite word?
Consider the Fibonacci word

ω = abaababaabaababaababaabaababaabaababaababaa · · ·

There are few local configurations = factors

A factor is a word made of consecutive occurrences of letters
ab is a factor, bb is not a factor of the Fibonacci word

But
· · · aaaaaaaaaaaabaaaaaaaaaaa · · ·

has as many factors of length n as

· · · abaababaabaababaababaabaababaabaababaababaa · · ·

The Fibonacci word has n + 1 factors of length n
But words with 2n + 1 factors of length n are not all
quasicrystals!



How to define a notion of order for an infinite word?
Consider the Fibonacci word

ω = abaababaabaababaababaabaababaabaababaababaa · · ·

Consider densities of occurrences of factors

Symbolic discrepancy

∆N = max
i∈A
||ω0ω1 . . . ωN−1|i − N · fi |

if each letter i has density fi in ω

fi = lim
N→∞

|ω0 · · ·ωN−1|i
N

The Fibonacci word has bounded symbolic discrepancy

(cf. good equidistribution properties for real numbers having
bounded partial quotients)



How to define a notion of order for an infinite word?
Consider the Fibonacci word

ω = abaababaabaababaababaabaababaabaababaababaa · · ·

Let α ∈ [0, 1]. We consider the Kronecker sequence ({nα})n
associated with the translation over T = R/Z

Rα : T 7→ T, x 7→ x + α

Discrepancy

∆N = supI interval |Card {0 ≤ n ≤ N; {nα} ∈ I} − N · µ(I )|
= supI interval |Card {0 ≤ n ≤ N; Rn

α(0) ∈ I} − N · µ(I )|

Symbolic discrepancy

∆N = max
i∈A
||ω0ω1 . . . ωN−1|i − N · fi |



The Tribonacci substitution [Rauzy’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

σ∞(1) : 12131211213121213 · · ·

Its incidence matrix is Mσ =




1 1 1
1 0 0
0 1 0




The number of i in σn(j) is given by Mn
σ [i , j ]

Its characteristic polynomial is X 3 − X 2 − X − 1

It is primitive: there exists a power of Mσ which contains only
positive entries

 Perron-Frobenius theory

one expanding eigendirection
a contracting eigenplane
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Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number



Pisot number
Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Tribonacci substitution σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Its incidence matrix is Mσ =




1 1 1
1 0 0
0 1 0




Its characteristic polynomial is X 3 − X 2 − X − 1. Its
Perron-Frobenius eigenvalue is a Pisot number

Pisot + Perron-Frobenius  one expanding eigendirection
a contracting eigenplane



Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates λ (except itself) satisfy

|λ| < 1

Pisot substitution σ is primitive and its Perron–Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Fact Words generated by Pisot substitutions have bounded
symbolic discrepancy

∆N = max
i∈A
||ω0ω1 . . . ωN−1|i − N · fi |

with fi = lim
N→∞

|ω0 · · ·ωN−1|i
N



Substitutive dynamical systems

Let σ be a primitive substitution over A.
Let ω = (ωn) with σ(ω) = ω be an infinite word generated by σ.
Let S be the shift

S((ωn)n) = (ωn+1)n

S(abaababaa · · · ) = baababaa · · ·

The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(ω); n ∈ N} ⊂ AN

This is the set of infinite words whose factors are also factors of ω



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system

T is a homeomorphism acting on the compact space X

Example T = R/Z Rα : T 7→ T, x 7→ x + α



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system

A non-zero continuous function f ∈ C(X ) with complex values is
an eigenfunction for T if there exists λ ∈ C such that

∀x ∈ X , f (Tx) = λf (x)

Discrete spectrum (X ,T ) is said to have pure discrete spectrum
if its eigenfunctions span C(X )



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system

Example
Rα : T/Z→ T/Z, x 7→ x + α

fk : x 7→ e2iπkx , fk ◦ Rα = e2iπkαfk



Spectrum

Eigenvalue Let (X ,T ) be a topological dynamical system

Theorem [Von Neumann] Any invertible and minimal topological
dynamical system minimal with topological discrete spectrum is
isomorphic to a minimal translation on a compact abelian group

Example In the Fibonacci case σ : 1 7→ 12, 2 7→ 1
(Xσ, S) is measure-theoretically isomorphic to (R/Z,R 1+

√
5

2

)

Xσ
S−→ Xσy

y
T −→

Rα

T



The Pisot substitution conjecture

Substitutive structure + Algebraic assumption (Pisot)

= Order (discrete spectrum)

Discrete spectrum = translation on a compact group



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(ω); n ∈ N} ⊂ AN



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(ω); n ∈ N} ⊂ AN

Question Under which conditions is it possible to give a geometric
representation of a substitutive dynamical system as a translation
on a compact abelian group? (discrete spectrum)



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(ω); n ∈ N} ⊂ AN

The Pisot substitution conjecture Dates back to the 80’s

[Bombieri-Taylor, Rauzy,Thurston]

If σ is a Pisot irreducible substitution, then (Xσ,S) has discrete
spectrum



Substitutive dynamical systems
Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(ω); n ∈ N} ⊂ AN

Example In the Fibonacci case

σ : 1 7→ 12, 2 7→ 1

(Xσ,S) is measure-theoretically isomorphic to (R/Z,R 1+
√
5

2

)

R 1+
√
5

2

: x 7→ x +
1 +
√

5

2
mod 1

The Fibonacci word yields a quasicrystal



Substitutive dynamical systems

Let σ be a primitive substitution over A.
The symbolic dynamical system generated by σ is (Xσ,S)

Xσ := {Sn(ω); n ∈ N} ⊂ AN

The Pisot substitution conjecture
If σ is a Pisot irreducible substitution, then (Xσ,S) has discrete
spectrum

The conjecture is proved for two-letter alphabets

[Host, Barge-Diamond, Hollander-Solomyak]



Tribonacci’s substitution [Rauzy ’82]

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Xσ
S−→ Xσy

y
T2 −→

+(1/β,1/β2)
T2

Question Is it possible to give a geometric representation of the
associated substitutive dynamical system Xσ as a Kronecker map
= translation on an abelian compact group?

Yes! (Xσ,S) is measure-theoretically isomorphic to a translation
on T2 = R2/Z2

Question How to produce explicitly a fundamental domain?

Rauzy fractal G. Rauzy introduced in the 80’s a compact set with
fractal boundary that tiles the plane which provides a geometric
representation of (Xσ, S)  Thurston for beta-numeration



Tribonacci dynamics and Tribonacci Kronecker map

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Theorem [Rauzy’82] The symbolic dynamical system (Xσ,S) is
measure-theoretically isomorphic to the translation Rβ on the
two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

Markov partition for the toral automorphism




1 1 1
1 0 0
0 1 0



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Tribonacci dynamics and Tribonacci Kronecker map

σ : 1 7→ 12, 2 7→ 13, 3 7→ 1

Theorem [Rauzy’82] The symbolic dynamical system (Xσ,S) is
measure-theoretically isomorphic to the translation Rβ on the
two-dimensional torus T2

Rβ : T2 → T2, x 7→ x + (1/β, 1/β2)

Markov partition for the toral automorphism



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




The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · · π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)

π(~e3)

c© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π(~e1)

π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)

π(~e3)

c© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π(~e1 + ~e2)

π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)

π(~e3)

c© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π(~e1 + ~e2 + ~e1)

π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)

π(~e3)

c© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
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The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

121312112131212131211213 · · ·
π(~e1 + ~e2 + ~e1 + ~e3 + ~e1)

π projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of Mσ

π(~e1)
π(~e2)

π(~e3)

c© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
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Dynamics of Pisot substitutions

Periodic tiling



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Dynamics of Pisot substitutions

Periodic tiling ←→ partition of the torus T2

(Xσ, shift) ∼= (T2, x 7→ x + (
1

β
,

1

β2
))

. . . 1213121121 . . . ∈ Xσ



Why do we get fractals for d ≥ 3?

The pieces of the Rauzy fractal are bounded remainder sets

They produce atoms of Markov partitions for toral
automorphisms

They capture simultaneous approximation properties



Bounded remainder sets and Kronecker sequences

Let α = (α1, . . . , αd) ∈ [0, 1]d

with 1, α1, · · · , αd Q-linearly independent

We consider the Kronecker sequence

({nα1}, . . . , {nαd})n

associated with the translation over Td = (R/Z)d

Rα : Td 7→ Td , x 7→ x + α

α = (α1, · · · , αd)

Bounded remainder set A set X for which there exists C > 0 s.t.
for all N

|Card{0 ≤ n ≤ N; Rn
α(0) ∈ X} − Nµ(X )| ≤ C
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Bounded remainder sets
Case d = 1

Theorem [Kesten’66] Intervals that are bounded remainder sets are
the intervals with length in Z + αZ

General dimension d

Theorem [Liardet’87] There are no nontrivial boxes that are
bounded remainder sets

Boxes are not bounded remainder sets

It is possible to find polytopes that are bounded remainder sets for
any irrational rotation in any dimension

[Haynes-Koivusalo,Grepstad-Lev]

Renormalization?

How well can one approximate a box by bounded remainder
sets?
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Pisot dynamcis

Bounded remainder set A set X for which there exists C > 0 s.t.
for all N

|Card{0 ≤ n ≤ N; Rn
α(0) ∈ X} − Nµ(X )| ≤ C

σ : 1 7→ 12, 2 7→ 3, 3 7→ 1

Fact The pieces of the Rauzy fractal are bounded remainder sets



Variations around Rauzy fractals
One can define Rauzy fractals for substitutions over

Delone sets/cut-and-project schemes
[Lee,Moody,Solomyak,Sing,Frettlöh,Baake etc.]

trees [Bressaud-Jullian]

on the free group [Arnoux-B.-Hillion-Siegel, Coulbois-Hillion]

and for numeration dynamical systems defined in terms of Pisot
numbers

beta-numeration [Thurston, Akiyama, Ei-Ito-Rao,B.-Siegel,
Minervino-Steiner, Barge, etc.]

abstract numerations [B.-Rigo]

Shift Radix Systems [B.-Siegel-Steiner-Surer-Thuswaldner]

and even

Selmer numbers [Kenyon-Vershik]

in codimension 2 [Arnoux-Furukado-Harris-Ito]

Pisot families [Akiyama-Lee, Barge-Stimac-Williams]

nonalgebraic parameters  S-adic Rauzy fractals



Variations around Rauzy fractals
One can define Rauzy fractals for substitutions over

Delone sets/cut-and-project schemes
[Lee,Moody,Solomyak,Sing,Frettlöh,Baake etc.]
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S-adic expansions and non-stationary dynamics

Definition An infinite word ω is said S-adic if there exist

a set of substitutions S
an infinite sequence of substitutions (σn)n≥1 with values in S

such that
ω = lim

n→+∞
σ1 ◦ σ2 ◦ · · · ◦ σn(0)

The terminology comes from Vershik adic transformations
Bratteli diagrams

S stands for substitution, adic for the inverse limit
powers of the same substitution= partial quotients



Beyond the Pisot conjecture: S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

For almost every (α, β) ∈ [0, 1]2, the translation by (α, β) on
the torus T2 admits a symbolic model: the S-adic system
provided by the Brun multidimensional continued fraction
algorithm applied to (α, β) is measurably conjugate to the
translation by (α, β)

Conjecture Every unimodular S-adic Pisot system is
measure-theoretically conjugate to a Kronecker translation
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Pisot adic dynamics

Substitutions produce hierarchical ordered structures (infinite
words, point sets, tilings) that display strong self-similarity
properties

Substitutions are closely related to induction (first return
maps, Rokhlin towers, renormalization etc.)

Pisot substitutions create a hierarchical structure with a
significant amount of long range order

The Pisot property is a dynamical property

We can go beyond algebraicity via the S-adic formalism
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