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Toward long-range aperiodic order

What is meant by quasiperiodicity?



The objects under consideration

e Infinite words (sequences with values in a finite alphabet)

abaababaabaababaababaabaababaabaababaababaa - - -

o Tilings
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A tiling of the plane is a collection of tiles that covers the
plane with no overlaps



Tilings and

quasicrystals



Crystals and periodicity




Crystals and diffraction

Periodicity = discrete diffractogram



Crystals and diffraction

Periodicity < discrete diffractogram



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang'61, Berger'66, Robinson'71,...])



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang'61, Berger'66, Robinson'71,...])

@ Quasicrystals produce a discrete diffraction diagram (—order)

o Diffraction comes from regular spacing and local interactions
of the point set A (consider the relative positions A — A)



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang'61, Berger'66, Robinson'71,...])

“His discovery was extremely controversial. In the course of
defending his findings, he was asked to leave his research group.
However, his battle eventually forced scientists to reconsider their
conception of the very nature of matter.”

© Communiqué de presse de I'Académie royale suédoise des
sciences 2011, Prix Nobel de D. Schechtman.



Quasiperiodicity and quasicrystals

Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang'61, Berger'66, Robinson'71,...])

Which mathematical models for quasicrystals?



Quasiperiodicity and quasicrystals
Quasicrystals are solids discovered in 84 with an atomic structure
that is both ordered and aperiodic [Shechtman-Blech-Gratias-Cahn]

An aperiodic system may have long-range order

(cf. Aperiodic tilings [Wang'61, Berger'66, Robinson'71,...])

Which mathematical models for quasicrystals?

There are mainly two methods for producing quasicrystals
@ Substitutions
e Cut and project schemes

[WHAT IS.. a Quasicrystal? M. Senechal]



Which models for quasicrystals?

Aperiodic mosaics, such as those found in the medieval Islamic
mosaics of the Alhambra Palace in Spain and the Darb-i Imam
Shrine in Iran, have helped scientists understand what
quasicrystals look like at the atomic level. In those mosaics, as in
quasicrystals, the patterns are regular - they follow mathematical
rules - but they never repeat themselves.

When scientists describe Shechtman's quasicrystals, they use a
concept that comes from mathematics and art: the golden ratio.

© Communiqué de presse de I'Académie royale suédoise des
sciences 2011



Tilings and art




Tilings and art
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Tilings and design
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© Thomas Fernique — Image des mathématiques



A periodic tiling
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A quasiperidoic tiling

Every finite patch can be found

in any sufficiently large patch



Cut and project schemes

Projection of a “plane” slicing through a higher dimensional lattice

@ The comes from the lattice structure
@ The nonperiodicity comes from the irrationality of the normal
vector of the “plane”




Substitutions



Substitutions

@ Substitutions on words and symbolic dynamical systems

@ Substitutions on tiles : inflation/subdivision rules, tilings and
point sets
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e Tilings Encyclopedia http://tilings.math.uni-bielefeld.de/







Substitutions and tilings

Principle One takes
@ a finite number of prototiles {71, T2, ..., Tm}
@ an expansive transformation @

@ a rule that allows one to divide each QT; into copies of the
T1,To, ..., T

A substitution is a simple production method that allows one to
construct infinite tilings using a finite number of tiles

Example

R B ol B, SR



The chair tiling

by - -T2




Substitutions allow the construction of aperiodic tilings

© E. Harriss



Substitutions allow the construction of aperiodic tilings
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A substitution on words : the Fibonacci substitution

Definition A substitution ¢ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

c:1—12, 2—1

1

12

121
12112
12112121

o%°(1) = 121121211211212 - - -



A substitution on words : the Fibonacci substitution

Definition A substitution ¢ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example

0:1—12, 2—1 0°°(1)=121121211211212---

) o) [e] e] ) [ ) ) [¢]

[¢] o o o [¢] [¢] (6]

o [¢] [¢)

The Fibonacci word yields a quasicrystal



A substitution on words : the Fibonacci substitution

Definition A substitution ¢ is a morphism of the free monoid

Positive morphism of the free group, no cancellations

Example
o0:1—12, 2—1 ¢%°(1)=121121211211212---
Why the terminology Fibonacci word?
o™ (1) = 0"(12) = o"(1)0"(2)
a"(2) = o"}(1)
o™L(1) = o"(1)o" (1)

The length of the word ¢"(1) satisfies the Fibonacci recurrence



Which substitutions do generate quasicrystals?



How to define a notion of order for an infinite word?

Consider the Fibonacci word

w = abaababaabaababaababaabaababaabaababaababaa - - -

@ There is a simple algorithmic way to construct it
(cf. Kolmogorov complexity)
But not all substitutions do produce quasicrystals



How to define a notion of order for an infinite word?
Consider the Fibonacci word

w = abaababaabaababaababaabaababaabaababaababaa - - -

@ There are few local configurations = factors

A factor is a word made of consecutive occurrences of letters
ab is a factor, bb is not a factor of the Fibonacci word

But

- - - a3aaaaaaaaaabaaaaaaaaaaa- - -

has as many factors of length n as

- -~ abaababaabaababaababaabaababaabaababaababaa - - -

The Fibonacci word has n + 1 factors of length n
But words with 2n + 1 factors of length n are not all
quasicrystals!



How to define a notion of order for an infinite word?
Consider the Fibonacci word

w = abaababaabaababaababaabaababaabaababaababaa - - -

@ Consider densities of occurrences of factors

Symbolic discrepancy

A/\/ == max||wow1 .. .wN_1|,- —N- f,|
ieA

if each letter / has density f; in w

- wo - wn—1]i
fi= lim ———
! Nl—r>noo N
The Fibonacci word has bounded symbolic discrepancy

(cf. good equidistribution properties for real numbers having
bounded partial quotients)



How to define a notion of order for an infinite word?
Consider the Fibonacci word

w = abaababaabaababaababaabaababaabaababaababaa - - -

e Let a € [0,1]. We consider the Kronecker sequence ({na})n
associated with the translation over T = R/Z

Ry:T—T, x—x+a«
Discrepancy
Ay = SUp; interval ICard {0 < n < N;{na} € I} — N - pu(l)|
= SUP, interval ICard {0 < n < N; RE(0) € 1} — N - ()]
Symbolic discrepancy

AN = mawaowl .. .wN,1’; —N- f;‘
icA



The Tribonacci substitution [Rauzy'82]

o112, 2513, 3151
o™(1): 12131211213121213- -

Its incidence matrix is M, =

o~
=
O O

The number of i in o"(j) is given by M[i, ]

Its characteristic polynomial is X3 — X% — X — 1



The Tribonacci substitution [Rauzy'82]

o112, 2513, 3151
o™(1): 12131211213121213- -

Its incidence matrix is M, =

o~
=
O O

The number of i in o"(j) is given by M[i, ]
Its characteristic polynomial is X3 — X% — X — 1

It is primitive: there exists a power of M, which contains only
positive entries
~> Perron-Frobenius theory

one expanding eigendirection
a contracting eigenplane



Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates A (except itself) satisfy

Al <1

Pisot substitution ¢ is primitive and its Perron—Frobenius
eigenvalue (for its incidence matrix) is a Pisot number



Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates A (except itself) satisfy

Al <1

Pisot substitution o is primitive and its Perron—Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Tribonacci substitution ¢ : 1 +— 12, 2+— 13, 3
1
Its incidence matrixis M, = | 1
0

Its characteristic polynomial is X3 — X2 — X — 1. Its
Perron-Frobenius eigenvalue is a Pisot number

Pisot + Perron-Frobenius ~~ one expanding eigendirection
a contracting eigenplane



Pisot number

Pisot-Vijayaraghavan number An algebraic integer is a Pisot
number if its algebraic conjugates A (except itself) satisfy

A <1
Pisot substitution o is primitive and its Perron—Frobenius
eigenvalue (for its incidence matrix) is a Pisot number

Fact Words generated by Pisot substitutions have bounded
symbolic discrepancy

AN = mawaowl .o .wN_l\,- - N- f,’
icA

. . wo .. .wN—l .
with ; = lim Q
N—oo N



Substitutive dynamical systems

Let o be a primitive substitution over A.
Let w = (wp,) with o(w) = w be an infinite word generated by o.
Let S be the shift

5((Wn)n) = (Wn+1)n
S(abaababaa- - -) = baababaa - - -

The symbolic dynamical system generated by o is (X, S)

X, = {S"(w); ne N} c AN

This is the set of infinite words whose factors are also factors of w



Spectrum

Eigenvalue Let (X, T) be a topological dynamical system



Spectrum

Eigenvalue Let (X, T) be a topological dynamical system

T is a homeomorphism acting on the compact space X

Example T =R/Z Ry: T—T, x—= x4+«



Spectrum

Eigenvalue Let (X, T) be a topological dynamical system

A non-zero continuous function f € C(X) with complex values is
an eigenfunction for T if there exists A € C such that

Vx € X, f(Tx) = A(x)

Discrete spectrum (X, T) is said to have pure discrete spectrum
if its eigenfunctions span C(X)



Spectrum

Eigenvalue Let (X, T) be a topological dynamical system

Example
Ro:T/Z —T/Z, x = x4+«

fk: X > e2i7rkx, fk o Ra = e2i7rkafk



Spectrum

Eigenvalue Let (X, T) be a topological dynamical system

Theorem [Von Neumann] Any invertible and minimal topological
dynamical system minimal with topological discrete spectrum is
isomorphic to a minimal translation on a compact abelian group

Example In the Fibonaccicase 0: 1+ 12,2 +— 1
(X5, S) is measure-theoretically isomorphic to (R/Z, R, )
2




The Pisot substitution conjecture

Substitutive structure + Algebraic assumption (Pisot)

= Order (discrete spectrum)

Discrete spectrum = translation on a compact group




Substitutive dynamical systems

Let 0 be a primitive substitution over A.
The symbolic dynamical system generated by o is (X,, S)

X, :={S"(w); ne N} c AV



Substitutive dynamical systems

Let o be a primitive substitution over A.
The symbolic dynamical system generated by o is (X5, S)

X, :={S5"(w); ne N} c A"

Question Under which conditions is it possible to give a geometric
representation of a substitutive dynamical system as a translation
on a compact abelian group? (discrete spectrum)



Substitutive dynamical systems

Let o be a primitive substitution over A.
The symbolic dynamical system generated by o is (X, S)

X, = {5"(w); ne N} c AY

The Pisot substitution conjecture Dates back to the 80’s
[Bombieri-Taylor, Rauzy, Thurston]

If o is a Pisot irreducible substitution, then (X, S) has discrete
spectrum



Substitutive dynamical systems
Let o be a primitive substitution over A.
The symbolic dynamical system generated by o is (X,, S)

X, = {S"(w); ne N} c AV

Example In the Fibonacci case
0:1—122—1
(X5, S) is measure-theoretically isomorphic to (R/Z, R, )
2

1 5
+2f mod 1

Riys:x—x+
2

o
o o
o
o

e © o o o

o o © o o o



Substitutive dynamical systems

Let o be a primitive substitution over A.
The symbolic dynamical system generated by o is (X5, S)

X, :={S5"(w); ne N} c AV

The Pisot substitution conjecture
If o is a Pisot irreducible substitution, then (X5, S) has discrete
spectrum

The conjecture is proved for two-letter alphabets

[Host, Barge-Diamond, Hollander-Solomyak]



Tribonacci's substitution [Rauzy '82]

Xs — Xs
c:1—12, 2+— 13, 3—1 l l
T? — T?

+(1/8,1/8%)

Question s it possible to give a geometric representation of the
associated substitutive dynamical system X, as a Kronecker map
= translation on an abelian compact group?

Yes! (X5, S) is measure-theoretically isomorphic to a translation
on T? = R?/7?2

Question How to produce explicitly a fundamental domain?
Rauzy fractal G. Rauzy introduced in the 80's a compact set with

fractal boundary that tiles the plane which provides a geometric
representation of (X,,S) ~»Thurston for beta-numeration



Tribonacci dynamics and Tribonacci Kronecker map

o112, 2513, 3> 1

Theorem [Rauzy'82] The symbolic dynamical system (X,,S) is
measure-theoretically isomorphic to the translation Rj on the
two-dimensional torus T?

Rs : T2 = T2, x v x + (1/8,1/8?)




Tribonacci dynamics and Tribonacci Kronecker map

o112, 2513, 3> 1

Theorem [Rauzy'82] The symbolic dynamical system (X,,S) is
measure-theoretically isomorphic to the translation Rj on the
two-dimensional torus T?

Rs : T2 = T2, x v x + (1/8,1/8?)




Tribonacci dynamics and Tribonacci Kronecker map

o112, 2513, 3> 1

Theorem [Rauzy'82] The symbolic dynamical system (X, S) is
measure-theoretically isomorphic to the translation Rj on the
two-dimensional torus T?

Rs : T2 = T2, x v x + (1/8,1/8?)

Markov partition for the toral automorphism

O R
— O
O O =



The Rauzy fractal as a geometric representation
Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213 - - - 7 projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213- - - 7 projection along the
m(é1) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213- - - 7 projection along the
m(él + &) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213- - - 7 projection along the
m(el + &+ é1) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213 - - - 7 projection along the
m(é1 + & + € + €) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213- - - 7 projection along the
m(éi+é&+é+6é+é) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213- - - 7 projection along the
(e +&+6é+é&+é +é) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation
Consider the Tribonacci substitution
0:1—12, 2—3, 3—1

121312112131212131211213- - - 7 projection along the
g +é&t+a+atréeat+etet--) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

0:1—12, 2— 3, 3—1

121312112131212131211213 - - -
Téitea+at+eat+éitateat )

© Timo Jolivet

7 projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

0:1—12, 2—3, 3—1

121312112131212131211213- - -
Teiteat+eat+eateteatet )
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© Timo Jolivet

7 projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

0:1—12, 2—3, 3—1

121312112131212131211213 - - - 7 projection along the
m(éi+eé&+eéi+ét+é+&+eé+--) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

m(e3)

© Timo Jolivet



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

0:1—12, 2—3, 3—1

121312112131212131211213 - - -
Teiteat+eat+eateteatet )

© Timo Jolivet

7 projection along the
expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

(&)



The Rauzy fractal as a geometric representation

Consider the Tribonacci substitution

0:1—12, 2—3, 3—1

121312112131212131211213 - - - 7 projection along the
m(éi+eé&+eéi+ét+é+&+eé+--) expanding eigenline
onto the contracting
plane of the incidence
matrix of M,

(&)

© Timo Jolivet



Dynamics of Pisot substitutions

Periodic tiling




Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?




Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

™| =

.. 1213121121 ... € X,

1
' B2

)



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

...M13121121... € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

. 1M13121121 ... € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

. 12MB121121 ... € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

CL121@121121 .. € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

1213021121 .. € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

1213101121 .. € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

L 121312121 .. € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

L 1213121MR1 .. € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

1213121101 ... € X,



Dynamics of Pisot substitutions

Periodic tiling «+— partition of the torus T?

(X, shift) = (T2, x — x + (

,512))

™| =

coo121312112@. . € X,



Why do we get fractals for d > 37

@ The pieces of the Rauzy fractal are bounded remainder sets

@ They produce atoms of Markov partitions for toral
automorphisms

@ They capture simultaneous approximation properties



Bounded remainder sets and Kronecker sequences
Let a = (a,...,aq) € [0,1]¢

with 1, a1, -+, ag Q-linearly independent

We consider the Kronecker sequence

({naa},...,{nag})n



Bounded remainder sets and Kronecker sequences

We consider the Kronecker sequence

({nal}, N {nad})n

associated with the translation over T = (R/Z)?

Ry: T T x—x+a

a=(ag, -, aq)



Bounded remainder sets and Kronecker sequences

We consider the Kronecker sequence

({nal}, N {nad})n

associated with the translation over T9 = (R/Z)¢

Ry: T T x—x+a

a=(ag, -, aq)

Bounded remainder set A set X for which there exists C > 0 s.t.
for all V

|Card{0 < n < N;R(0) € X} — Nu(X)| < C



Bounded remainder sets
Cased =1

Theorem [Kesten'66] Intervals that are bounded remainder sets are
the intervals with length in Z + oZ



Bounded remainder sets
Cased =1

Theorem [Kesten'66] Intervals that are bounded remainder sets are
the intervals with length in Z + oZ

General dimension d

Theorem [Liardet'87] There are no nontrivial boxes that are
bounded remainder sets



Bounded remainder sets
Cased =1

Theorem [Kesten'66] Intervals that are bounded remainder sets are
the intervals with length in Z + oZ

General dimension d

Theorem [Liardet'87] There are no nontrivial boxes that are
bounded remainder sets

Boxes are not bounded remainder sets

It is possible to find polytopes that are bounded remainder sets for
any irrational rotation in any dimension
[Haynes-Koivusalo,Grepstad-Lev]

@ Renormalization?

@ How well can one approximate a box by bounded remainder
sets?



Pisot dynamcis

Bounded remainder set A set X for which there exists C > 0 s.t.
for all N

|Card{0 < n < N;RI(0) € X} — Nu(X)| < C

o112, 253, 31

Fact The pieces of the Rauzy fractal are bounded remainder sets




Variations around Rauzy fractals
One can define Rauzy fractals for substitutions over

@ Delone sets/cut-and-project schemes
[Lee,Moody,Solomyak,Sing,Frettloh,Baake etc.|

@ trees [Bressaud-Jullian]
@ on the free group [Arnoux-B.-Hillion-Siegel, Coulbois-Hillion|

and for numeration dynamical systems defined in terms of Pisot
numbers

@ beta-numeration [Thurston, Akiyama, Ei-lto-Rao,B.-Siegel,
Minervino-Steiner, Barge, etc.|

@ abstract numerations [B.-Rigo]
e Shift Radix Systems [B.-Siegel-Steiner-Surer-Thuswaldner|



Variations around Rauzy fractals
One can define Rauzy fractals for substitutions over

@ Delone sets/cut-and-project schemes
[Lee,Moody,Solomyak,Sing,Frettloh,Baake etc.|

@ trees [Bressaud-Jullian]
@ on the free group [Arnoux-B.-Hillion-Siegel, Coulbois-Hillion|

and for numeration dynamical systems defined in terms of Pisot
numbers

@ beta-numeration [Thurston, Akiyama, Ei-lto-Rao,B.-Siegel,
Minervino-Steiner, Barge, etc.|

@ abstract numerations [B.-Rigo]

e Shift Radix Systems [B.-Siegel-Steiner-Surer-Thuswaldner|
and even

@ Selmer numbers [Kenyon-Vershik]

@ in codimension 2 [Arnoux-Furukado-Harris-Ito]

@ Pisot families [Akiyama-Lee, Barge-Stimac-Williams]

@ nonalgebraic parameters ~~ S-adic Rauzy fractals



S-adic expansions and non-stationary dynamics

Definition An infinite word w is said S-adic if there exist
@ a set of substitutions S
@ an infinite sequence of substitutions (op),>1 with values in §

such that
w= lim g100p0---00,(0)
n—+00
The terminology comes from Vershik adic transformations
Bratteli diagrams

S stands for substitution, adic for the inverse limit
powers of the same substitution= partial quotients



Beyond the Pisot conjecture: S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

o For almost every (a, 3) € [0,1]?, the translation by (a, 3) on
the torus T? admits a symbolic model: the S-adic system
provided by the Brun multidimensional continued fraction
algorithm applied to («, 3) is measurably conjugate to the
translation by («, /3)



Beyond the Pisot conjecture: S-adic Pisot dynamics

Theorem [B.-Steiner-Thuswaldner]

o For almost every (a, 3) € [0,1]?, the translation by (a, 3) on
the torus T? admits a symbolic model: the S-adic system
provided by the Brun multidimensional continued fraction
algorithm applied to («, 3) is measurably conjugate to the
translation by («, /3)

Conjecture Every unimodular S-adic Pisot system is
measure-theoretically conjugate to a Kronecker translation



Pisot adic dynamics

@ Substitutions produce hierarchical ordered structures (infinite
words, point sets, tilings) that display strong self-similarity
properties

@ Substitutions are closely related to induction (first return
maps, Rokhlin towers, renormalization etc.)

@ Pisot substitutions create a hierarchical structure with a
significant amount of long range order

@ The Pisot property is a dynamical property

@ We can go beyond algebraicity via the S-adic formalism
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